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Abstract 

Given a Dirac operator P on a manifold with boundary, we discuss a particular local elliptic 
boundary condition for P as well as the (pseudo-differential) boundary condition of Atiyab-Patodi- 
Singer type. We prove that P is elliptic under either of these boundary conditions and extends to 
a self-adjoint operator with a discrete spectrum. Basic spectral estimates are given. In order to do 
so, we require purely functional analytic arguments and elementary estimates. 0 1998 published 
by Elsevier Science B.V. All rights reserved. 
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0. Introduction 

Let (V, ( , ), y, V) be a Dirac bundle over a compact oriented Riemannian manifold 
M with boundary which need not be product near aM. This means that x : V + M 
is a complex vector bundle furnished with a Hermitian structure (., .), a Clifford module 
structure y : Clif (M) + End(V) and a compatible connection V. The Dirac operator P 
on V reads in terms of a local orthonormal frame {e 1, . . , e,) for TM I u as 

‘IU = YCei>‘ej’ (0.1) 

The aim of this paper is to establish elliptic boundary conditions for the Dirac operator P 
and study its spectrum. This can be done easily, if there exists a chirality operator F on V, i.e. 
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a self-adjoint isomorphism F E End(V) which is covariantly constant and anti-commutes 
with the Clifford map y . In that case the local boundary conditions, given by 

lot 
#la‘%4 E r f 1 meaning that (Fy(NM)h = f+la~, (0.2) 

turn out to be elliptic. Here N denotes the unit normal on i3M. 
On the other hand P can be decomposed on the boundary aM into a normal and tangential 

component, reading 

(P+)lu = v(N)(V,& + A@)lr/. (0.3) 

The operator A is L2 self-adjoint on aM and has a discrete spectrum, which (eventually after 
a small perturbation) is bounded away from 0. The famous pseudo-differential boundary 
condition of Atiyah-Patodi-Singer type then requires that the restriction $]a~ is in the 
negative eigenspace of the operator A, i.e., @]a~ E r 6”. It is well known that this non- 
local boundary condition is elliptic. 

Technically, our approach is based on the Lichnerowicz formula, which states that P2 is 
the connection Laplacian V*V perturbed by a curvature endomorphism, say R E End(V), 
i.e. 

P2$h = v*(v$> + R@. (0.4) 

Based on this, the key observation is to prove that P satisfies under either of the boundary 
conditions above the elliptic estimate 

ll~ll;, 5 GllwII~2 vlc/ E (N;(P) f-l D-(P)). (0.5) 

Here No’_(P) denotes the complement of the kernel of the Dirac operator P. Then our main 
results read as follows: 
- The Dirac operator P with domain K(P) is a self-adjoint operator on L2 (M, V). Here 

D_(P) is the space of all sections in H’ (M, V) which satisfy the boundary condition 
+]a~ E r !? or $18~ E r Aps, respectively. 

- The operator P with domain V_(P) has a pure point spectrum. The eigensections # E 
D_(P), satisfying P@ = h4 are smooth. 

- If the mean curvature of the boundary aM L, M is strictly positive, then the curvature 
endomorphism R gives a lower bound for ht , the eigenvalue of P on D-(P) of least 
absolute value. That is 

Most of these results are well known. In particular the (non-local) Atiyah-Patodi-Singer 
boundary condition has been discussed a lot in the literature, cf. [4,5] for general results, 
and [12] for original reference. In the present paper we show that the results on the Dirac 
operator on manifolds with boundary can be established as well on a very elementary level. 
We present an approach to tackle this type of problems completely by means of basic 
estimate and standard results from functional analysis. In particular no reference is needed 
to the calculus of (elliptic) pseudo-differential boundary problems, cf. [6] or [3]. 
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In Sections 1 and 2 we give a short review on Dirac bundles and establish a global 
Lichnerowicz formula. This is the key for proving a priori estimates for P under either of 
the boundary conditions $lsM E r :“” and q%laM E r 2” This is worked out in Sections . 
3 and 4. In Section 5 we show that P is self-adjoint and allows for the estimate (0.5). In 
Section 6 we show that P is a Fredholm operator which has discrete spectral resolution. 
Moreover we establish the (geometric) estimate (0.6) for the first eigenvalue. Regularity 
results are given in Section 7. Section 8 contains an application to inhomogeneous boundary 
value problems and a Hodge-type decomposition. 

1. Dirac bundles 

Let (M, g) be an orientable n-dimensional CcQ Riemannian manifold with smooth bound- 
ary a M. The tangent and cotangent bundle are identified by the b-map, nb ( w) : = g (u , w ). 
Its inverse is denoted by g. The Clifford bundle Clif (M) is defined by the relation 

u x w + w * TV = -2g(v, w)Id. (1.1) 

Let rr : V + M be a smooth complex vector bundle furnished with a Hermitian structure 
(., .). The space P(M, V) of all smooth sections is equipped with a L”-structure 

where dp is the Riemannian volume element. L*(M, V) is the completion of CW(M, V) 

with respect to the corresponding norm ll$llt. For the restriction of the bundle V to the 
boundary aM we write Va. On the space of smooth sections C”(aM, Va) an L*-structure 
is defined accordingly by integration with respect to the induced Riemannian volume d& . 

A Clifford module structure y on V is a [W-algebra bundle morphism 

y : Clif(M) -+ End(V). 

Then the quadruple (V, (, ) , y, V) defines a Dirac bundle if: 
- The Clifford multiplication is fibrewise skew-adjoint, i.e., 

- There exists a Hermitian connection V : Coo (M, V) -+ f?(M, T*M 63 V), which acts 
as a module derivation with respect to the Clifford map y , that is, V y = 0. In other words 
the compatible connection V satisfies 

V(Y(WM) = Y(VWM + Y(W)V@ 
VW E C@‘(M, Clif(M)), ‘~‘4 E Cm(M, V), (1.4) 

where V w is understood as the action of the induced Levi-Civiti connection on Clif (M). 



70 S. Farinelli, G. Schwarz/Joumal of Geometry and Physics 28 (1998) 67-84 

For each Clifford module y : Clif(M) + End(V) one can construct a corresponding 
Dirac bundle, cf. [2]. That is, one can always find: 
- a Hermitian structure ( , ) which makes the Clifford multiplication by tangent vectors 

y(v) skew-adjoint, 
- a locally and globally well-defined connection V, which is Hermitian and compatible. 

In general there are several possible choices for the connection V which makes (V, (, ), y> 
into a Dirac bundle. However, there exists a unique spin connection Vs which is compatible 
and an extension of the Levi-Civith connection in the following sense. 

It suffices to define Vs locally and patch it together by a partition of unity, since a convex 
combination of compatible connections is compatible. To do so, we utilize the connection 
matrixoS,whichal-formonU cMwithvaluesinEnd(V(rl_).Let{el,...,e,}bealocal 
orthonormal frame for TM 1 u and (~1, . . . , SN}, a local bundle frame on VIu, then each 
s E CW(M, V) locally writes as s = f Js~. If r/k denote the Christoffei symbols for the 

Levi-CivitB connection on U, the connection l-form ms is defined by 

J(ek) := $r;kr(ej)v(fZi). 

Then the spin connection Vs is (locally) defined by 

V’S = df J @ SJ + f %%J, where V’S J = (co'): 8s~. 

(1.5) 

(1.6) 

This spin connection satisfies conditions (1.3) and (1.4) needed to define a Dirac bundle. 
If (V, (, ), y, V) be a Dirac bundle, a smooth self-adjoint isomorphism F E End(V) is 

called a chirulity operatol; if 

F o y(u) + y(v) o F = 0 V,F = 0, V v E TM, and F2 = Id. (1.7) 

In general, such a structure need not exist, but there are topological obstructions, cf. [4]. 
However, if M is even-dimensional, the normalized orientation can be used to define such 
an isomorphism. Therefore let {el , . . . , e,} is a local orthonormal on U c M, then the 
operator 

FIu := (1/-i-)n’2v(eMe2). . . r@J (1.8) 

is well-defined locally, i.e. independent of the choice of the frame. By partition of unity we 
can construct a globally well-defined chirality operator F. 

If (V, (, ), y, V) is a Dirac bundle over the Riemannian manifold (M, g), the Dirac 
operator P is defined by the composition 

C’=(M, V) 2 Cm(M, T*M 8 V) tt Cm(M, TM 8 V) L Cw(M, V). 

That is 

P : CW(M, V) + C”(M, V) 

4 I-+ P(4) = Y 0 (tl@W(V4). (1.9) 
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The leading symbol is given by the Clifford multiplication as CJL (P) (x, 6) = l/--i-y (6”). 
In terms of a local orthonormal frame {et, . . . , e, ) the action of P becomes 

(P4>Iu = y(ej)(Vg$) V# E P(M, V). (1.10) 

If F is a chirality operator on (V, (, ) , y, V), it anti-commutes with the Dirac operator, i.e. 

PF+FP=O. (1.11) 

2. A global Licbnerowicz formula 

The square of the Dirac operator P2 : C?(M, V) + C”O(M, V) defines the Diruc- 
Laplace operator. This second order operator can be rewritten in terms of the connection 
Laplacian on V by means of a Lichnerowicz formula reading 

(2.1) 

where R stands for the curvature endomorphism, cf. [ 11. 
In order to derive an integrated version of (2.1) we need to study the Dirac operator 

near the boundary. Therefore let N be the inward pointing unit normal field on i3M, and 

]A’, Z2, . . . , i?, }, a local orthonormal frame on a neighborhood U n a M. Then 

(P+)lu = y(N)(v~Ilr + A@>lu where A = -Y(N)y@j)V;;I. (2.2) 

From (1.11) we get A F 18~ - F 18~ A = 0. Moreover it is straightforward to verify that 

AY(N) + Y(N)A = -Y(N)y(ej)y(Vz,N) = -Y(N)SFI, (2.3) 

where Sa is the mean curvature, i.e., the trace of the second fundamental form of the 
submanifold a M c M. 

Let a differential l-form C+J, E Cm(M, T*M) be given by Ce$(u) := (y(u)+, 4). Its 
divergence d* can be written in terms of P as 

d*C++ = -(Ve,C++@j>) + f&#(V,ej) = -(Pllr, 4) + (14, P4). (2.4) 

From the Gaul3 theorem we then infer that the Dirac operator is symmetric with respect to 
the L2-structure (1.2) modulo a boundary term, i.e. 

((PI++, 4)) - ((1cIt P@)) = - 
s 

(y(N)+, 4) dha. (2.5) 

aA4 

Given a local orthonormal frame {ei , . . . , e,} on each l.J, E U for an appropriate cover U 
of M, and a subordinated partition of unity pa, then the H ’ inner product on Co3 (M, V) 
reads 

((1cIT 4))~’ = ((llr> 4)) + (W$, V@)) VIlr, 4 E CmWt V> 
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where 

(2.6) 

We can write things this way, since the expression on the right-hand side is independent of 
the partition and the local frame chosen. 

Proposition 1. The H1 inner product can be computed in terms of the Dirac operator P, 
the curvature endomolphism R and the boundary operator A as 

(W, 4))Hl = (($9 4)) + ((P@? P4)) 

- (($3 W)) + s ($9 A@) @a. 
ahf 

(2.7) 

Proofi Using (2.5) and the Lichnerowicz formula (2.1) we get 

((Pllr, P@)) = ((llr, V*V@)) + ((+, R~J)) - 1 (y(N)+, P#) dba. 

aM 

Gw 

On the other hand the GauB theorem implies that 

((llr, V*V#)) = ((Vlc/, V~J)) + s (14, vN@) @a. (2.9) 

ahf 

From the splitting (2.2) of the Dirac operator on aA we infer that 

s 
((14, VN~) - (~W)llr, f’+)> &a = - 

s 
(+, A#) +a. 

aM a.bf 

Adding Eqs. (2.8) and (2.9) then proves the assumption. 

(2.10) 

0 

An obvious consequence of the preceding result is the corresponding formula which 
allows one to compute the H’ norm on P(M, V) in terms of P: 

llVlcI-11~~ = llP+ll~~ - ((9, R1Cr)) + 
s 

(@, A@) +a. (2.11) 

aM 

3. A local elliptic boundary condition for the Dirac operator 

If (V, (, ) , y, V) be a Dirac bundle with a chirality operator F it is possible to construct 
a local boundary condition for the Dirac operator P in terms of the operator, 

r : Va --+ Va defined byr := F(aMy(N). (3.1) 
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From (l.l), (1.3) and (1.7) it is clear that 

r2 = Id, I’F + FI’ = 0 (r+, +) = (4, r$) V@, I,// E CW(8M, V8). (3.2) 

Hence r has the eigenvalues f 1, and the eigenspaces 

r :o’ = (4 E cym, va) 1 zy = 41, 
r P = 14 E cym, va) 1 r4 = -4) (3.3) 

are orthogonal with respect to the induced Hermitian structure ( , ) on Va . The corresponding 
projections n* := $ (Id f r) are also self-adjoint operators so that 

(jr+(@), n-(llr)) = 0 W, $ E CDO@M, Va). (3.4) 

From (1.7) we infer that Ty(N)@ = sly@ for 4 E r y, respectively. Hence y(N) 
acts as an isomorphism intertwining r p and r 9, i.e., 

y(N) on+ = n_ o y(N) and y(N) on_ = rr+ o y(N). 

Moreover we infer from (2.3) and (1.7) that TA + AT = -r Sa, and hence 

Aon_ =n+oA+;S$. 

Lemma 2. Under the local boundary condition x+ ($) = 0 the Dirac operator P 
for an elliptic estimate. That is, for each S > 0 there exists CS such that $r satis$es 

Illc/II’,, 5 (I+ 6)IIPllr112,, + C~Ii1cFi& vlcr E CYM, v) n r 1”. 

(3.5) 

(3.6) 

allows 

(3.7) 

Proot In order to prove the estimate (3.7) we have to control the boundary integral of Eq. 
(2.11) under the boundary condition + 1s~ = n- (+). Since nk are self-adjoint projections, 
we get by using the commutation relation (3.6) 

s 
($3 A$) dpua = 

s 
(~-(1cr), A=($)) dpa = ; 

s 
Sa($, rllr) dpa. (3.8) 

aA aM ah4 

Therefore (2.11) turns into 

II Wll’,2 = IIVQ II;* + ((1cI9 W)) 

+; 
s 

Sa(+, llr) dpa V@ E Cm(M, V) n r 9. (3.9) 

?lM 

Since M is compact, R E End(V) and Sa E P(aA4, Va) are bounded on M and aM, 
respectively. Moreover, the restriction to the boundary extends to a compact operator from 
H ’ (M, V) to L2 (a M, Va). Therefore an inequality of Ehrling type applies, cf. [lo]. That 
is, for each E > 0 there is C, > 0 such that 

II$II~~~a,, 5 ~ll+ll~~ + C<lllc111~~ Vlcr E Cm(M, V> (3.10) 

Using this, the estimate (3.7) follows from (3.9). 0 
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Obviously this result holds correspondingly for the Dirac operator the complementary 
boundary condition n_ (+) = 0, i.e., 

(3.11) 

Corresponding results on the Dirac operator under local boundary conditions can be found in 
[ 121, cf. also [4]. That approach, presented there, is based on the concept of strongly elliptic 
boundary value problems, cf. also [5]. In contrast, the line of arguments in this paper requires 
not more than the estimate (3.7) and some standard arguments from functional analysis. 

A local boundary conditions of the type (3.3) which implies the estimate (3.7) can also be 
established in cases where a chirality operator F does not exist. In [ 1 l] we studied a Lorentz 
manifold N = R x M, where M is a compact Riemannian manifold with boundary. With 
ea denoting a time-like unit vector the operator ? := y (eo) y (N) can be used to construct 
an elliptic boundary condition for the induced Dirac operator P on M. However, that case 
does not fit completely into the discussion of this paper, since P” does not correspond to a 
Dirac bundle (V, ( , ), y, V) on M. 

4. A boundary condition of Atiyah-Patodi-Singer type 

In the context of index theorems another non-local boundary condition for the Dirac 
operator P is more common. In this section we consider a modified version of this Atiyah- 
Patodi-Singer boundary condition. By (2.2), P I 8~ = ~(N)(VN+A) where A is self-adjoint 
with respect to the L2 structure on the boundary. For E > 0 let 

A, := A + $a Id + EF : Cm(8M, Va) + Cm(aM, Va) (4.1) 

be the perturbation of A, where Ss is the mean curvature and F is the chirality operator. 
Then A, is a self-adjoint, too. From (1.7) and (2.3) we read of the commutation relations 

A,y(N) + y(N)Ac = 0 and A,F - FA, = 0. (4.2) 

Therefore A, has a discrete symmetric spectrum, and for arbitrary small 6 > 0 we can 
guarantee that ker(A,) = 0. Let (pk)kE~ be the spectral resolution of A<, i.e. Atpk = kklpk. 
The corresponding positive and negative eigenspaces of A, we denote by 

r M’S _ 
•t - 4 E Cw@M, va) 14 = c CkPk 3 

hk>O 

r AI’S = 

I 

ti E Cm@M, va> I ti = c ckqk 

I 

_ 

hk 40 

For the projections onto these spaces we write n+ and n_ . 

(4.3) 

Lemma 3. Zf (V, (, ), y, 0) is a Dirac bundle with chirality F, then n+($) = 0 is an 
elliptic boundary condition for P. For each 6 > 0 there exists Cs such that $ satisfies a 
Friedrichs estimate 
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11~112,I I (1 + wvll2,* + cdlqll?,2 V$ E P(M, v> l-l r APS. (4.4) 

Proot From (2.11) we infer that 

IlV@Il”,, = llP1lrll2,2 - ((llr, R@)) + .I (11/, A,+) WLa 

1 -- 
2 s 

Sal@, llr) @a - E 
s 

(llr, FQIF) +a (4.5) 

aM aM 

for all @ E C?(M, V). Under the boundary condition n+(q) = 0 we have 

s 
($, A,+) dga = c lc,1*h, I 0 V+ E r APS. 

aM kn <0 

Therefore 

(4.6) 

ll+ll~l 5 Cllllrll~z + llP1/lll”,: - 
s 

(9, ($Sa + EF)@) dpa. (4.7) 

aM 

Estimating this boundary integral as in proof of (3.7) then proves the assumption. 0 

It is well known that elliptic boundary conditions of the Atiyah-Patodi-Singer type does 
not at all depend on the existence of a chirality operator F. For this paper, however, we spe- 
cialize to the particular condition (4.3) in order to treat the case @ E r APS simultaneously 
with the local boundary condition + E r p. 

5. Self-adjointness and elliptic estimates 

On the basis of the estimate of the preceding sections we are able to treat boundary value 
problems for the Dirac operator under the respective boundary conditions $ E r F and 
I++ E r tps. We observe that the Dirac operator extends to a bounded linear operator P : 
H’ (M, V) + L*(M, V), where H’(M, V) is completion of Ca(M, V) in the norm (2.6). 
The restriction to the boundary is a compact linear map from H’(M, V) to L*(aM, V;)), 
the completion of Coo (8M, Va). By construction we have an orthonormal decomposition 
on the boundary, reading 

L*(aM, Va) = L*r + e L*r _. (5.1) 
Here - and in the sequel - we use the symbol r + for r :” and r tps, simultaneously. 

Theorem 4. Let (V, (, ), y, V) be a Dirac bundle with chirality F. Then the Dirac operator 
P extends to a selfadjoint linear operator on L*(M, V) with domain 

K(P) := {C#J E H’(M, V) I qblaM E L*r -}. (5.2) 
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ProoJ From (2.5) we infer that 

=-- s (y(N)@, 14) dpa V+, 9 E H’(M, I’). (5.3) 

ah4 

Inparticular,iff$, + E D_(P)theny(N)c#~ E L2r +, cf. (3.5) and (4.2). The orthogonality 
of the splitting (5.1) implies that P is a symmetric operator. 

Let P* be the adjoint operator. Its domain is 

D_(P*) = (0 E L2(M, V) 13~ E L2(M, V) with ((x, $)) = ((0, P$)) 

V@ E D-(P)]. 

Hence for each ?? E D_(P*) n H1 (M, V) there exists x E L2(M, V) such that 

(5.4) 

((x, @)) = ((Pet @I)) + 
s 

(y(N)g, llr) @a W E D-(P). (5.5) 

aM 

In particular we may choose + to be supported away from 8M, i.e. $ E C,“(M, V). Since 
C,“(M, V) c L2(M, V) is dense, this implies that 

x=Pe and I (y(N)s, llr) dpa = 0 V+ E D-(P). (5.6) 
.I 

From (3.5) and (4.2) we infer that elan E L*r _. This proves that 

D_(P*) II H’(M, V) = D_(P). (5.7) 

For a general 0 E D._ (P*) there exists a sequence 19j E (2X (P*) n H’ (M, V)) such that 
Oj -+ 8 (strongly) in L2(M, V). Then 

- ue, fw = up*e, w ~3 E ~PL (5.8) 

which implies that Ptlj is weakly convergent in L2(M, V). In particular the sequence is 
bounded, and the estimates (3.7) and (4.4) yield 

llQjll$ 5 (1 +~)11P~jIl~2 +Gll$ll$ i K. (5.9) 

Hence there exists a weakly convergent subsequence ej, - Fin H1 (M, V). The uniqueness 
of the weak limit implies that $ = 8. This proves that 0 E R (P*> fl H’ (M, V), and hence 
P is a self-adjoint. 0 

Knowing about the self-adjointness of the Dirac operator with domain D_(P) it is clear 
that its spectrum is real. We denote by the eigenspaces 

N*(P) := {l+b E D_(P) I (P - h)l+b = 0). (5.10) 
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Of particular interest is the kernel of P, i.e. the eigenspace No(P). 

Lemma 5. The space No(P) is finite dimensional. 

Prooj The estimates (3.7) and (4.4) imply that 

Let @j be an arbitrary sequence in the unit disk D,/,, := (@ E No(p) ( ll$ II;, 5 I}. 
By Rellich’s lemma there is a convergent subsequence @jr -+ 3 in L2(M, V), which is a 
H1 -Cauchy sequence by (5.11). Therefore D_& is compact in H ’ (M, V) , and hence No ( P ) 
is finite-dimensional. cl 

In particular we infer from this lemma that No(P) is a closed subspace of D_(P), so 
that we have an orthogonal decomposition 

D-(P) = No(p) CIQ (N:(P) n D-(P)). (5.12) 

Lemma 6. There exists a universal constant Co E [ 1, co] such that 

IIV+II~~ 5 ~OII~II~~ w E (N@? n um. (5.13) 

Proof Let 4j be a minimising sequence for the quadratic form I( P @ (I i2 in the unit sphere 

S,bl := t$ E (No nwm I 11~11~2 = 11. (5.14) 
0 

By (3.7) and (4.4) this sequence is bounded in H’ (M, V) and hence has a weakly conver- 
gent subsequence @jk - $. The functional llP$l12 L2 is weakly lower semicontinuous on 

H’(M, V) andit follows that IIP$ll’,L 5 IIP$ll’,2 for all 3 E S_L,l. Therefore 
” 

Il~ll~?llmZ,2 5 IIfvll?,2 VI++ E (No n D-(P)). (5.15) 

On the other hand the embedding H’(M, V) C, L2(M, V) is compact, so that @j --+ @ix 
(strongly) in L2 (M, V), up to the selection of a subsequence. Thus lldoo 11 L2 = I, and from 
the uniqueness of the weak L2-limit we infer that & = 3 E S_L1. Therefore 11 P$IIfS2 # 0 

0 
and the estimates (3.8) and (4.4) turn into 

ll1lrllfp I llWll”,2 
( 

1 +a + $ 
) 

= coIlwll~? 
L2 

v@ E (N’(P) n up)). 

which proves the assertion. 

(5.16) 

0 
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6. The spectrum of Dirac operator 

Having access to the estimate (5.13) is the key to study the analysis of the Dirac operator 
under the boundary conditions imposed. In particular, it allows characterization of the range 
of the perturbed operator (P - CL), i.e., the space Im(P - CL) = {x E L*(M, V) 1 x = 
(P - p)@ for 1+4 E V_(P)} as the L*-complement of the eigenspace N,(P). This allows 
to prove the compactness of the resolvent and the existence of a spectral gap: 

Theorem 7. 
(i) The Dirac operator P with domain V_(P) is a Fredholm operator 

(ii) For each p E R the operator P induces an orthogonal decomposition 

L*(M, V) = N,(P) $ Im(P - CL). (6.1) 

In particulal; the index Ind( P - p) = 0. 

Pro05 
(i) Let +j E Im(P) be a L* Cauchy sequence. Then $j = P@j, and without loss of 

generality we can choose $j E (N:(P) f~ D_(P)). By (5.13) 

IlV+j - llrklli1 5 COll4j - kkll2* + 0. (6.2) 

Therefore +j + $ in H1 (M, V) and hence I,+ E D_(P). This proves that the range 
Im(P) of P is closed in L*(M, V). Since its kernel No(P) is finite dimensional, P is 
Fredholm. 

(ii) Since P is self-adjoint and Fredholm, so is (P - p) for each p E R!. From the closed 
range theorem we then infer that 

Im(P - 1) = Ker(P -p)’ , (6.3) 

which proves the decomposition (6.1). By self-adjointness the index vanishes. 0 

Lemma 8. Let jIi E I% satisfy 0 < p2 < l/Co, with Co given by the estimate (5.13). 
(i) The jI-eigenspace of P is trivial, i.e. N;;(P) = 0. 

(ii) The corresponding resolvent is a compact operator 

(P - j2-1 : L*(M, V) --+ L2(M, V). 

ProofI 
(i) Since P is self-adjoint, N;;(P) c (N:(P) fl D-(P)). By (5.13) 

(6.4) 

(6.5) 

and from F2 < l/Co we infer that N;(P) = 0. 
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(ii) By (i), the operator (P - j2) : D_(P) -+ L2(M, V) is a continuous bijection. The 
open mapping theorem guarantees the existence of a continuous resolvent (P - 2))’ : 
L2(M, V) -+ H’(M, V), satisfying 

II(P - WGll2,, I c;; 11~112,2 ‘/# E L2(K V). (6.6) 

If $j E L’(M, V) is a bounded sequence, then II(P - ~)-‘&]lH~ is bounded, too. 
Since the embedding H’ (M, V) c, L2(M, V) is compact, there exists a subsequence 
@jk such that 

(P - p>-‘@j, - 3 (strongly) in L’(M, V). (6.7) 

Hence the resolvent is a compact operator. 0 

Theorem 9. The spectrum of the Dirac operator P with domain V_(P) consists of entirely 
isolated real eigenvalues with$nite multiplicity. It admits a discrete spectral resolution, i.e. 

L2(M, V) = $ X(P). (6.8) 
kspec(P) 

Proof Since P is an operator with compact resolvent (cf. [7]), it has a purely discrete 
spectrum. By the Hilbert-Schmidt theorem there exists a spectral resolution (~k)k~~ such 
that 

(P - /.L)-‘pk = Uk(Pk with pk E D_(P) and ]Vk] - 0. (6.9) 

Then, by construction, 

PGok = kkqk. (6.10) 

where hk = (1 /vk + CL). This implies the desired spectral resolution (6.8) of P. II 

In addition to this structural result on the spectrum of the Dirac operator under the 
respective boundary conditions I+II 18~ E r p and I++ 13~ E l-’ izps, our approach allows one 
to give estimates for first eigenvalue of P, i.e. the eigenvalue of least absolute value. If @ 
is a eigenspinor we infer from (3.9) and (4.5) that 

- / ($a-+W,Wwa WE.%(P). 
ah4 

(6.11) 

As far as the boundary condition 1C/]aM E r ‘_” is concerned E = 0; for the case $ ]aM E 
r tPS we can choose c > 0 arbitrarily small. The curvature endomorphism is a symmetric 
operator in R E End(V) which has for each p E M a smallest eigenvalue pa(p). 

Theorem 10. Let (V, ( , ), y, V) b e a Dirac bundle over a compact manifold M with 
boundary and assume that the trace of the mean curvature is strictly positive, i.e. Sa (p) > 
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0 for all p E aM. Let spec( P) be the spectrum of the Dirac operator with domain V_(P). 
Writing this as an ordered set 

spec(P) = {ki 1 i E N with 0 5 ]hl] i ]k2] 5 ...}, 

the curvature endomorphism gives a lower bound for the$rst eigenvalue: 

(6.12) 

If D- (P) is understood with respect to the local boundary condition + 18~ E I’ e this 
also holds if Sa is non-negative on a M. 

Proof Under the assumption that Ss is strictly positive on a M the value of E can be chosen 
sufficiently small so that (Sa (p) - 2~) 2 0 for all p E aM. Then (6.11) implies that 

0 i a2 - 
s 

WI,Rllr)W 
I( 

5 a2 - po(p)(@I, @)dp 
s 

, 

M M 

(6.13) 

holding for all + E NA (P) with ]I I++ /IL2 = 1. Since pa(p) is continuous and M is compact, 
this implies the estimate (6.12). As far as the local boundary condition @]aM E r p 
is concerned we have E = 0. This implies that (6.13) also holds under the assumption 
S(p) 2 0 for all p E aM. 0 

Having characterized the spectrum of P it is obvious to formulate the corresponding 
spectral theorem for the Dirac-Laplace operator P2. Therefore we set 

K(P2) := {$ E L2(M, V) I @ E D_(P) and P$ E D_(P)}. (6.14) 

Corollary 11. The Dirac-Laplace operator P2 with domain V_( P2) is a seljkdjointpos- 
itive operator It admits a discrete spectral resolution, i.e. 

L2(M, V) = @Nk(P2) (6.15) 
k&l 

where N,(P2) := (qb E YD_(P2) I P@ E 23_(P) and (P2 - ~)c#I = 0). Moreover P2 is 
the generator of a contracting semigroup exp(-P2) in L2(M, V). 

Proof It is immediate from Theorem 4 that the Dirac-Laplace operator with domain 
2)- ( P2) is self-adjoint. Moreover, 

((1cI, P2W = llP1c1112,* w E mp2>, (6.16) 

which implies that P2 is a positive operator. By Theorem 9 it has a discrete spectral resolution 
with 

spec(P2) = (a2 E R I A ??spec(P)). (6.17) 

Therefore the operator (- P2) is dissipative and densely defined in L2(M, V), and the 
existence of a semi-group exp(- P2) follows from the Theorem of Lumer-Phillips [9]. 0 
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7. Regularity results 

The Hk Sobolev norm on CCQ(M, V) can be defined inductively by 

(7.1) 

Here B is a multi-index, the derivatives Vg are taken with respect to a local orthonormal 
frame{el,...,e,},andthenormllVB$I) L2 is understood as the L* integral over M with an 
appropriate partition of unity. Denoting the corresponding completion by Hk (M, V), the 
Sobolev embedding theorem states that Hk(M, V) c, C" (M, V) for k > s + i dim M. 

Lemma 12. If 11/ E h/h(P) satisfies either the local boundary condition $18~ E rl”” 
or the global one $18~ E T’Aps, then $ is smooth. In particular I/I E Hk(M, V) for all 
k E N. 

Proofi First we observe that P commutes with the covariant derivatives V, up to lower 
order terms, i.e. 

“,j~ - ‘,‘~ = C (Y(‘,, ei)Vcj + Y(ei)VV,,rj + Y(ei)Wei, ej))llr (7.2) 
i=l,...,n 

forj = l,..., n. Since the geometry of M is bounded the Christoffel symbols appearing 
in (7.2) are bounded too, and we can estimate 

C lIpv~jlcIll~* 5 C Ilv~~p1crl12,* + cllllrll’,l~ (7.3) 
j=l.....!l j=l,...,tf 

On the basis of this we can apply the argument of Eq. (2.11) to cj=, ,,.,n V, @ which yields 

C IIv~~ll~2 I C Ilv~jp~ll~2 + “ll@lIXI 
181=2 j=l,...,n 

(7.4) 

To control the boundary integral under the local boundary condition r !? let E be a smooth 
extension of the normal field. From ??* = 4 (Fy (s) f Id) we infer that 

VP,%(+) = j;_(V,+) - +Fy(%G)$ Vj = 1,. . , n. (7.5) 

With (3.6) -here understood accordingly for the extension ?* - we then get 
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Under the restriction to the boundary ah4 the projections ??+ and ii_ become orthogonal, _u 
and the operators Sa r and F y (Vej N) have a bounded trace. Thus we have 

cs 
(Ve, $7 AVcj $) dps i C 

i 

C 11% 9 IIt’ + llllr II~~(aM) 
1 

3 (7.7) 

j=l,...,naM j=I,...,n 

holding for all I+% which satisfy the boundary condition $ I aM E r F. Since the restriction 
to the boundary is an compact linear map from H’(M, V) to L2(aM, Va), the Ehrling 
inequality (3.10) implies that 

( 
c llv~j@ll~2(a&f) + Il+llt2jaM) 

j=l....,n 1 

5 :llllrll;qM) + cll~ll~~(M, w E C”W7 V). (7.8) 

For II/ subject to the Atiyah-Patodi-Singer boundary condition $18~ E r APS the same 
type of arguments applies. Therefore we have 

c Ilbtu~2 I ;lI~llz,*,,, + c2w11/112,1 + ll9112,J +~ll~ll~z(M)’ (7.9) 
Ml=2 

holding for each E > 0 under either of the boundary conditions I,+ E r _. By iteration of 
these arguments we can derive for an arbitrary k E N a corresponding estimate, reading 

c 
1 

llvsv+ll~2 5 pl12,qM) + ckwlc1112,k-I + 1111’112,k-1). (7.10) 

IBI=k 

If, in particular, P,lr = A@ this implies that 

]]@]];k 5 2(h2 + ck)h&, b+ E nlh(p>t (7.11) 

and by iteration we end up with 

ll@ll”,k I mll~ll;, w EN(P). (7.12) 

Consequently, @ E Nk( P) implies that $ E Hk(M, V) for all k E N. From the Sobolev 
embedding theorem we then infer that @ is smooth. 0 

Corollary 13. The splitting (6.1) respects the Coo structure, i.e., 

CCOW, V) = N,(P) G3 W(P - ~>Ic~M,v)> . (7.13) 

ProojI Intersecting the decomposition (6.1) with Coo (M, V) and using the preceding lemma 
implies that each 4 E C?(M, V) uniquely splits into 4 = r#~o + (P - h)x with &J E 
MA(P) C Cm(M, V) and (P - h)x E CCO(M, V). Using (7.10) and (7.8) we get x E 
Hk(M, V) for all k E N, which implies that x is smooth. 0 

Elliptic regularity, could be established as well by checking the Lopatinskii-Shapiro 
condition [8] for the boundary value problem in view. For the general case of pseudo- 
differential boundary problems, cf. [3]. 
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8. Applications: Boundary value problems and Hodge type decomposition 

To this end we consider a general inhomogeneous boundary value problem for the Dirac 
operator, reading 

p4 =$ on M 

n+(4) = n+(p) on aM. 
(8.1) 

Lemma 14. For each @ E L*(M, V) and p E H1 (M, V) satisfying the integrability 
condition 

((v+. x)1 + 
s 

W-Qp> x) Wa = 0 Vx E No(P). G3.2) 
8M 

the boundary problem (8.1) has a solution, which is unique up to an arbitrary 2 E No(P). 

Proo$ Given @ E L*(M, V) and p E H1(M, V) we consider the field ($ - Pp) E 
L*(M, V). By Theorem 7, theindex of the boundaryvalueproblem(8.1) vanishes. Therefore 
(@ - Pp) is in the range Im( P) of the Dirac operator if and only if (@ - Pp) E J$J( P)l. 
That is 

(((@ - PP>, x)) = 0 vx E No(P), (8.3) 

which is, by (2.3, equivalent to the integrability condition (8.2). Therefore 

($ - Pp) = P& with 6 E D_(P). (8.4) 

Choosing 4 := F + p we have 4 E H’(M, V). By construction it satisfies P$J = I,/J and 
rr+(@) = n+(p), and hence it is a solution of the boundary value problem. For any other 
solution of the form 4 + z we infer from (8.1) that Pz = 0 and n+(z) = 0. 0 

Finally we make an attempt to construct a Hodge type decomposition for the Dirac bundle 
(V, <, >, y, V). To do so we define the operator dp = $(Id - F)P on COO(M, V). Since 
F anti-commutes with P it follows that (dp)* = 0. Therefore we have an elliptic complex 

. , dp Cr(M, V)dp CT(M, V)% . . . (8.5) 

Using (2.5), it follows that d; := $ (Id + F) P is the formal adjoint, satisfying 

((dpIlr, 4)) = ((1cI, d;4)) V4, $ E C?(M V). (8.6) 

However, the boundary conditions $r E r * do not serve as an absolute or relative boundary 
condition for this complex - neither in the case r p or r 2”. Nevertheless it is possible 
to construct a Hodge-type decomposition for bundle L’(M, V) in terms of this complex. 

Lemma 15. The space L*( M, V) allows for an orthogonal decomposition 

L*(M, V) = dp(H’(M, V)) @ d;(H!(M, V)) @No(P) , (8.7) 
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where HJ(M, V) = (f$ E H’(A4, V) ) n+(4) = 0). Each * E L*(M, V) uniquely splits 
into 

$=dp#+dz4+x with @ED-(P), x EN&P). (8.8) 

ProojI By (6.1), $ splits into + = Pc$ + x with C#I E D_(P) and x E J%$( P). Then 
P = dp + d; which implies the decomposition (8.8). 0 

As far as the boundary conditions are concerned, this decomposition yields $18~ E r _ . 
However, there is no control about the boundary behavior of the other components dp4 and 
d:@, but only the sum ((dp + dg)#)laM will be in f _. 
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